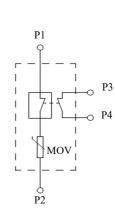
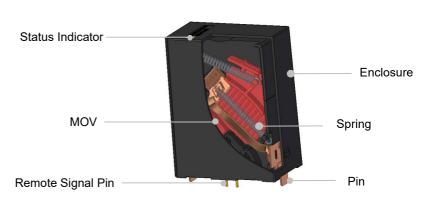

Description



Thermally Protected Varistors - Mechanically Off TypeThermally Protected Varistors (TFMOV) are thermally protected varistors. TFMOVs have all the characteristics of a varistor (MOV) with the added benefit of thermal protection.MOVs are subject to two types of deterioration: natural deterioration due to prolonged operation, and deterioration due to abnormal surges. When a surge occurs, the leakage current of the degraded MOV increases continuously, causing the surface temperature of the MOV to rise continuously and the possibility of fire. At this time, the heat of the MOV in TFMOV is conducted to the cryogenic alloy solder joint, which senses the abnormal temperature and operates (fuses), driving the spring slider to cut off the circuit, disconnecting the MOV from the main circuit and thus protecting the entire circuit, as well as the MOV itself will not continue to heat up, and the phenomenon of catching fire.


SETfuse (SETsafe | SETfuse) thermally protected varistor-mechanical release type TFMOV10M series is mainly composed of varistor (MOV), mechanical release device, flame-retardant housing and metal components (pins, springs). Nominal Discharge Current: 20 kA; Maximum Continuous Operating Voltage: (385 ~ 680) VAC; Maximum Continuous Operating DC Voltage: (505 ~ 900) VDC Safety Certification: UL, cUL, TUV, CE; RoHS, REACH compliant.

Schematics

Structure

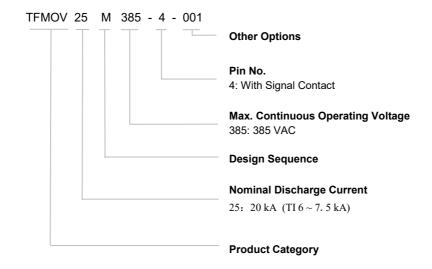
TFMOV (Mechanical trip)

TFMOV (Mechanical trip)

Features

- Overvoltage Protection has High Breaking Capacity and Fast Trip Response
- It Can Meet the Working Temperature of -40 ~ 105 °C
- Thermal Protection, High Reliability
- Small Size
- Remote Signal Contact for Failure Indication
- High Energy Capacity
- Sealing Material, Flame-retardant to V0 (UL 94)
- Comply with UL 1449 / IEC 61643-11

Applications

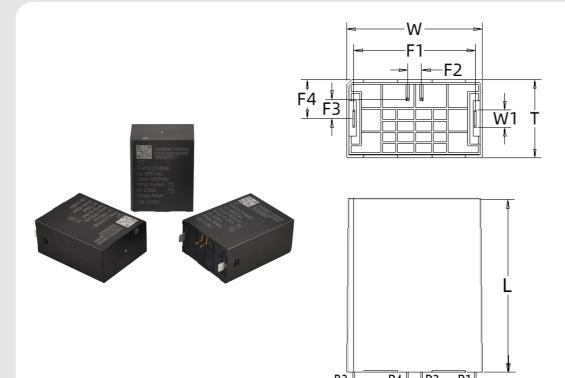

- Telecom Equipment
- String Inverter in Photovoltaic System
- AC / DC Power Supply
- Uninterruptable Power Supply (UPS)
- Surge Protective Device (SPD)
- Electric Meter
- Power Distribution Unit (PDU)
- Lightning Protection Socket

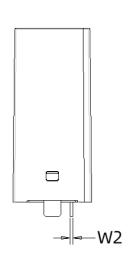
SETsafe SET fuse

Agency Approvals

Agency Symbol	Standards	The File No. and certification No. obtained by SETsafe SETfuse	Category	
AL °	UL 1449 4th	E322662	Type 4CA Type 1CA	
. PL °	CSA C22. 2 NO. 5 CSA C22. 2 NO. 4	E322662	Type 4CA Type 1CA	
TÜVRheinland	EN 61643-11, EN 61643-31	J 50522548 / J 50522558	Class I and Class II	
(€	IEC/EN 61643-11, IEC/EN 61643-31	AN 50522552 / AN 50522561	Class I and Class II	
Environment	RoHS & REACH	Compliant		

Part Numbering System


Reminder:


- 1. Pin number and other options are used only as identification codes for internal unique specifications and are not part of the product model
- 2.Part numbering system in the datasheet is only for selecting correct parameter and product features. Before plaing order, please contact us for specifications and use the part number and product code in the specification s to place order to ensure the part is correct. Product code is the unique indentification.

TFMOV Thermally Protected Varistors-Mechanical trip

SETsafe SET fuse

TFMOV25M Series

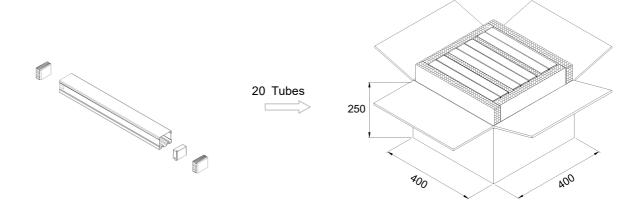
Note: Unit: mm

L	\mathbf{L}_1	W	W ₁	\mathbf{W}_2	Т
50.0 ± 1.0	4.0 ± 0.5	39.5 ± 1.0	5.0 ± 0.2	0.8 ± 0.2	22.5 ± 1.0
T_1	T ₂	F ₁	F ₂	F ₃	F ₄
0.6 ± 0.1	0.5 ± 0.1	35.0 ± 0.5	4.0 ± 0.5	5.5 ± 0.5	11.2 ± 0.5

-T1 -----T2

Specifications

Model	Nominal System Voltage	Nominal Varistor Voltage @1mA	Conti	ax. nuous rating tage	Nominal Discharge Current (8/20 µs)	Impulse Discharge Current (10/350 µs)	Max. Discharge Current (8/20 μs)	Voltage Protection Level	UL1449	IEC/EN 61643-11	IEC/EN 61643-31
	<i>U</i> _n	VDC	MC	OV	I _n	I_{imp}	I _{max}	<i>U</i> _p			
	VAC(V)	(V)	U _c (VAC)	U _{cpv} (VDC)	(kA)	(kA)	(kA)	(V)	DC Type 4CA	Class I and Class II	Class I and Class II
TFMOV25M385T1	277	620	385	505	20	7.5	40	1800	•	•	•
TFMOV25M440T1	347	680	440	585	20	7.5	40	2100	•	•	•
TFMOV25M510T1	347	820	510	670	20	6.5	40	2400	•	•	•
TFMOV25M550T1	480	910	550	745	20	6.5	40	2700	•	•	•
TFMOV25M575T1	480	950	575	760	20	6	40	2800	•	•	•
TFMOV25M625T1	480	1000	625	825	20	6	40	2900	•	•	•
TFMOV25M680T1	480	1100	680	900	20	6	40	3000	•	•	•

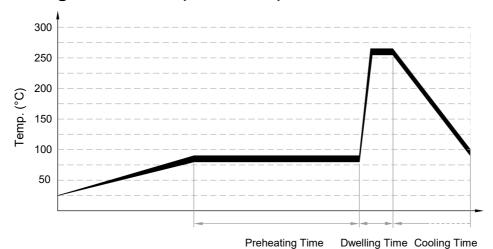

Note

1.The Value of Voltage Protection Level (U_0) is determined according to IEC 61643-11:2011 clause 6.4.

Preferred values of voltage protection level (kV): 0.08, 0.09, 0.10, 0.12, 0.15, 0.22, 0.33, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 1.8, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 8.0, 10.

2.."•" indicates that the product has been certified.

Packaging Information



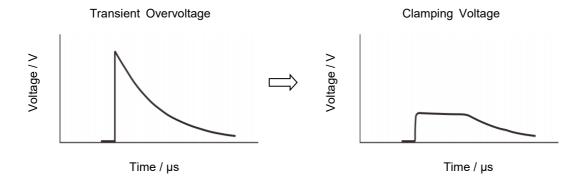
Unit: mm;

Please contact us if you have special packaging requirements.

Item	Tube	Carton		
Dimensions (mm)	46 × 43 × 318	400 × 400 × 250		
Quantity (PCS)	17	340		

Wave Soldering Parameters (Reference)

Time (s)


Item	Temp. (°C)	Time (s)		
Preheating	80 ~ 120	60 ~150		
Dwelling	250 ~ 270	4 ~ 6		

Recommended Hand-Soldering Parameters

Item	Condition
Iron Temperature	350 °C (Max.)
Soldering Time	4 seconds (Max.)
Distance between Soldering Point and the Bottom of Product	2 mm (Min.)

SETsafe SET fuse

MOV Operation Principle

Thermal Protection MOV

Figure a is a surge protection circuit commonly used in power supplies. MOV is used to suppress the surge voltage and protect the subsequent circuit. There is a risk of burning when the varistor degrades or fails. In the high-reliability surge protection circuit of Figure b, in order to improve the safety of the circuit, a thermal protection varistor TFMOV is used as the surge voltage protection element. TFMOV is a combination of varistors (MOV) and thermal protection component. When the temperature of the MOV is abnormally exceeded, the thermal fuse will be opened first, so that the failure mode of the MOV appears to be open-circuit failure.

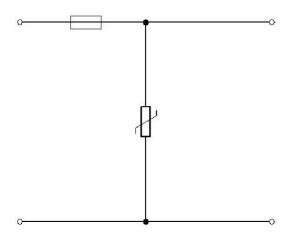


Figure a Typical surge protection circuit

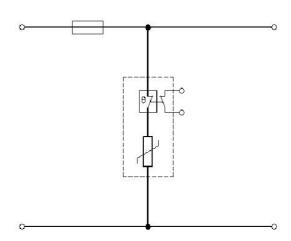


Figure b: High reliability surge protection circuit

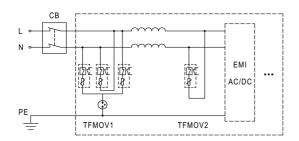
Benefits

Safety

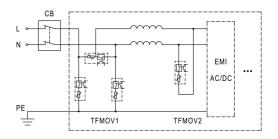
TFMOV Failure Simulation

During the electrical performance degrading of varistor, the inbuilt ATCO will open the circuit when the leakage current of varistor increases to tens of micro Amperes. As shown in the figure above, this is a safe open circuit failure.

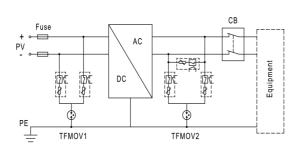
Hidden Danger

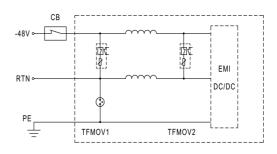


MOV Failure Simulation

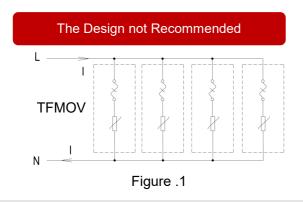

The electrical performance of varistor degrades with operating, mostly the varistor voltage drops, and leakage current increases. The heat accumulation can cause the temperature increase sharply and varistor results in thermal breakdown to short circuit status. It's very dangerous.

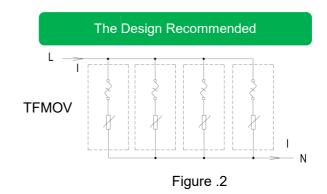
Application Options


Remote Radio Unit (AC Type)


Power Strips (Surge Protector)

PV Inverter


Remote Radio Unit (DC Type)



Design

When a single TFMOV surge capacity can't meet the requirement of customers, paralleling more TFMOVs is recommended. Due to its nonlinear current-voltage characteristics, please pay attention to below tips:

- 1. Use the TFMOV from the same manufacturer with same model to parallel.
- 2. Control the varistor voltage; Typically, the varistor voltage deviation should be less than 1% in the same group (between the Max and Min), and meet the next tip at the same time.
- 3. Calculate the average surge capacity for each TFMOV and keep a margin at least 10%.
- 4. Design the layout like Figure.2. to make sure the surge capacity is divided averagely.

Glossary

Item	Description
V_{N}	Nominal Varistor Voltage Voltage, at specified d.c. current used as a reference point in the component characteristic.
8/20 µs	8/20 Current Impulse Current impulse with a nominal virtual front time of 8 μs and a nominal time to half-value of 20 μs.
1.2/50 μs	— (IEC 61643-1 1.2/50 Voltage Impulse Voltage impulse with a nominal virtual front time of 1.2 μs and a nominal time to half-value of 50 μs. — (IEC 61643-1
U c	Maximum Continuous Operating Voltage Maximum r.m.s. voltage, which may be continuously applied to the SPD's mode of protection. — (IEC 61643-1
I _n	Nominal Discharge Current Crest value of the current through the SPD having a current waveshape of 8/20. — (IEC 61643-1
I _{imp}	Impulse Discharge Current for Class I Test Crest value of a discharge current through the SPD with specified charge transfer Q and specified energy W in the specified time. — (IEC 61643-1
I _{max}	Maximum Discharge Current Crest value of a current through the SPD having an 8/20 waveshape and magnitude according to the manufacturers specification. I_{max} is equal to or greater than I_n . — (IEC 61643-1
V c	Clamping Voltage Peak voltage developed across the varistor terminations under standard atmospheric conditions, when passin an 8/20 µs class current pulse. — (IEC 61643-1
Cv	Capacitance Capacitance across the MOV measured at a specified frequency and voltage. — (IEC 61643-1
Modes of protection	Mode of protection of an SPD An intended current path, between terminals that contains protective components, e.g. line-to-line, line-to-eart line-to-neutral, neutral-to-earth.
U p	— (IEC 61643-1 Voltage Protection Level Maximum voltage to be expected at the SPD terminals due to an impulse stress with defined voltage steepnes and an impulse stress with a discharge current with given amplitude and waveshape. — (IEC 61643-1
IP	Degree of protection of enclosure Classification preceded by the symbol IP indicating the extent of protection provided by an enclosure against access to hazardous parts, against ingress of solid foreign objects and possibly harmful ingress of water — (IEC 61643-1
MOV	Varistors A resistive device with nonlinear voltammetry characteristics — (IEC 61643-1

TFMOV Thermally Protected Varistors-Mechanical trip

SETsafe | SET fuse

Patents

Name	Region	Category	Patent NO.
Varistor with In-built Alloy-Type Thermal Fuse	China	Patent for Invention	ZL 200510044661.5
A Protection Pluggable Module with Over Current、Over Voltage、 and Over Temperature Protection Function	China	Utility Model	ZL 201020244488.X
A Varistor with Double Protection Function	China	Utility Model	ZL 201020255481.8
Surge Protection Module Applicable for Power Strip	China	Utility Model	ZL 201120107173.5
A Surge Protection Module Applicable for Power Strip	China	Patent for Invention	ZL 201110092261.7
A New Type of Varistor and Surge Protective Device with Thermal Protection	China	Utility Mode	ZL 201420306127.1
A Surge Protective Device	China	Utility Modeel	ZL 201420415059.2
A Varistor and Thermal Protection Component Combination	China	Utility Mode	ZL 201520376567.9
合金型温度 ヒューズ 付 のバリスタ	Japan	Utility Mode	3142835
Varistor with an Alloy-Type Temperature Fuse	Australia	Utility Mode	2007100456
Varistor with an Alloy-Type Temperature Fuse	Taiwan	Utility Model	M 300855
Varistor with an Alloy-type Temperature Fuse	Canada	Patent for Invention	2588819
Metal Oxide Varistor with Built-in Alloy-Type Temperature Fuse	USA	Patent for Invention	US 8780521
Varistor with In-built Alloy Type Thermal Fuse (with Housing)	USA	Patent for Invention	US 9355763

TFMOVThermally Protected Varistors-Mechanical trip

TFMOV25M Series

ATTENTION

Usage

- 1. The voltage applied continuously to the TFMOV can not exceed its maximum continuous operating voltage U_c.
- 2. When atmosphere press is from 45 kPa to 106 kPa, the related altitude shall be from 5000 meters to 500 meters.
- 3. Do not touch the product body or pins directly when power is on, to avoid electric shock.
- 4. Do not clean the TFMOV with strong polar solvent such as ketone, esters, benzene, halogenated hydrocarbon, to avoid damaging the enclosure.
- 6. It should have a reliable grounding when using these products.

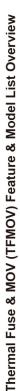
Replacement

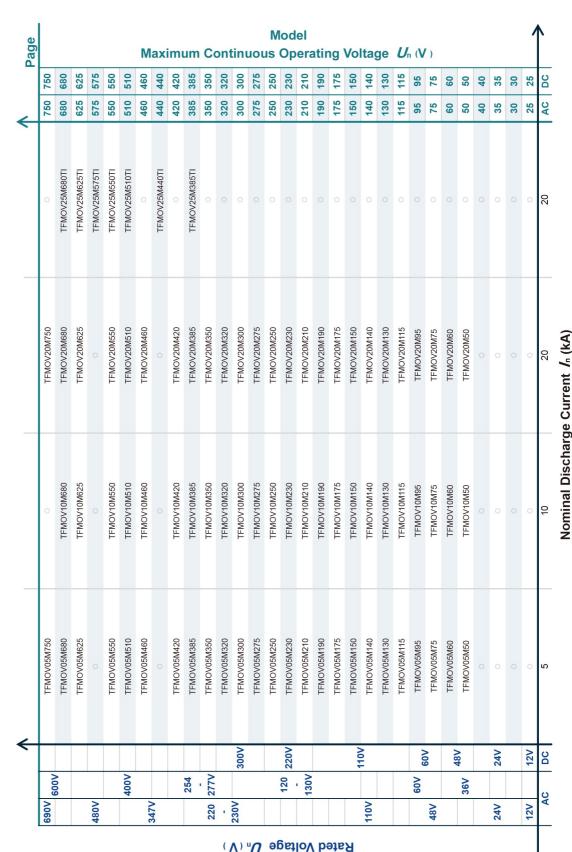
TFMOV is a non-repairable product. For safety sake, please use equivalent TFMOV for replacement.

Storage

Do not store TFMOV at high temperature, high humidity or corrosive gas environment. To avoid reducing the solderability of the pins, please use them up within 1 year after receiving the goods.

Installation Position


Do not install the TFMOV on a place that may often suffer severe continuous vibration.


Mechanical Stress

Do not take violent action such as knocking when assembling to avoid mechanical damage.

Thermally Protected Varistors-Mechanical trip

